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We investigate the nonlinear interaction between two weak optical fields in carbon nanotube quantum dots
based on electromagnetically induced transparency and spin-orbit coupling. Our results show, owing to the
energy differences produced by strong spin-orbit coupling, that a giant cross-Kerr nonlinearity can be achieved
with group-velocity matching, while the probe- and signal-fields absorptions are suppressed simultaneously.
We demonstrate that such enhanced nonlinear optical effects can be employed to implement controlled-phase
gate between pairs of single-photon pulses with high fidelity and to generate entanglement of coherent
Schrödinger-cat states.
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Photons are good candidates for quantum bits because
they do not interact strongly with their environment and can
be transmitted over long distances. The strong nonlinear in-
teraction between photons lie at the heart of quantum effects
in optics such as frequency conversion,1 the quantum en-
tanglement of ultraslow photons2 and ultraslow optical
solitons,3 nonlinear phase gate,4,5 single-photon propagation
controls,6 and so on. However, given the weakness of non-
resonant optical nonlinearities and the dominant role of ab-
sorption in resonant process, the combination of a large non-
linear susceptibility and reduced—especially canceled—
resonant absorption appears to be incompatible in
conventional media. Electromagnetically induced transpar-
ency �EIT� �Ref. 7� technology is a promising avenue for
solving this problem because it can modify the linear and
nonlinear optical properties dramatically. Based on EIT and
double EIT, some feasible schemes for achieving giant Kerr
nonlinearity with reduced absorption have been studied
theoretically4,5,8–10 and observed experimentally.11,12

In comparison with atomic systems, the interaction be-
tween semiconducting quantum dots �QDs�/carbon nanotube
�CNT� and optical fields is strongly enhanced due to the
large dipole moments ��10−17 esu cm in QDs �Ref. 13� and
�10−18 esu cm in CNT �Ref. 14��. The QDs and CNT are
thereby regarded as good candidates to study nonlinear opti-
cal effects. For example, the observation of the controlled
phase shifts up to � /4 was reported in a single-quantum dot
coupled to a photonic crystal nanocavity.15 In addition,
carbon-based systems are promising candidates for spin-
based applications16–18 because of their long intrinsic deco-
herence times and zero-spin nuclei.19 In defect-free CNT
QD, it is widely believed that spin-orbit coupling would be
weak for both electron and hole, and the electronic states
possess electron-hole symmetry.20 Two sets of spin-
degenerate orbits are expected to yield a fourfold-degenerate
energy spectrum.21,22 However, recent theories suggested
that the existence of strong spin-orbit coupling in CNTs is
due to their curvature and cylindrical topology.23 More re-
markably, Kuemmeth et al.,24 by measuring the transport
spectroscopy, observed that the interaction between an elec-
tron’s spin and its orbital motion is strong and the electron-

hole symmetry in such a system is thereby broken down.
Based on the strong spin-orbit coupling, it has been pointed
out that the spin of electron or hole can be manipulated all
optically with high fidelity.25

In our previous work,10 we studied the tunneling-induced
large cross-Kerr nonlinearity in an asymmetric quantum
well. However, because the group velocities of the probe and
signal fields are mismatched, the nonlinear phase shift cannot
be achieved at single-photon level. In the present Brief Re-
port, motivated by these works, we investigate the nonlinear
interaction between two ultraweak optical fields in CNT QD
with strong spin-orbit coupling based on EIT and demon-
strate that a giant cross-Kerr nonlinearity accompanied by
suppressed absorptions can indeed be achieved, and yet the
probe and signal fields travel with equal propagation veloci-
ties utilizing the energy shift produced by strong spin-orbit
coupling. Furthermore, we discuss the applications of the
proposed scheme in quantum-information processing such as
controlled-phase gate operation with high fidelity for two
single-photon pulses and generation of entanglement be-
tween the signal and probe fields.

We consider a structure �see Fig. 1�a��, in which QD is
formed on semiconducting CNT with a diameter d
�1.2 nm and the lowest optical transition is in the near
infrared ��1500 nm�.26 The topology of CNT separates
electron movement into two orbits of equal energy: one that
encircles around the nanotube circumference in a clockwise
fashion and the other that circles anticlockwise, therefore
exhibiting an orbital magnetic moment pointing along the
axis.27 In the absence of spin-orbit coupling, the ground
states of electron and hole are fourfold degenerate: two of
these are orbital states and two are spin states �spin up and
spin down�. Due to the strong spin-orbit coupling, the zero-
field fourfold degeneracy is split into two pairs of doublet
states with parallel and antiparallel spin and orbital magnetic
moments with energy differences �SO

e �1.5 meV and �SO
h

�0.9 meV.24,27 The subscript SO and superscript e �h� de-
note spin-orbit coupling and electron �hole�, respectively.
The magnetic field couples independently to the spin and
orbital moments; therefore the existence of the doublet states
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can be revealed by applying a magnetic field B� parallel to
the tube axis. It is shown in Fig. 1�b�, as a consequence of
increasing B�, the spectrum splits into pairs of anticlockwise
and clockwise states �going down and up in energy, respec-
tively, i.e., Zeeman splitting�.24 The probe and signal fields
are, respectively, applied to excite the electron from the va-
lence band to conductive band, yielding two corresponding
three-particle states �two electrons and one hole�. They are
represented by �3	 and �4	. These two three-particle states
couple coherently by the orthogonal component of the mag-
netic field with strength �=g�BB� /�. Here, g�2 for both
electron and hole24 and �B is the Bohr magneton. In trion
picture, the energy diagram can be described as in Fig. 1�c�.
In Figs. 1�b� and 1�c�, as Imamoğlu and Galland did in
Ref. 25, we label the positive- and negative-orbital magnetic
moments with U and D, respectively. Due to momentum
conservation, only the optical transitions U→U and D→D
are allowed. The up and down arrows denote the projection
of the spin along the CNT axis �↑ for Sz= +� /2� and the
subscripts designate electron or hole states.

It is worth noting that the key feature of this structure is
that the decay rates from the state �3	 to �2	 and from �4	 to
�1	 are much smaller than the Rabi frequency � and the
exciton recombination rates ��31

−1��42
−1�40 ps �Ref. 28��,

which is crucial for EIT. As a result, the absorptions of the
probe and signal fields are very small and can be ignored
when two-photon resonance condition is fulfilled.7 In the lin-
ear limit, we can view in our qualitative discussion the four-
level system �see Fig. 1�c�� as two three-level subsystems, in
which both the probe and signal fields exhibit EIT with the
same coupling field � to induce coherence between two
three-particle states. Consequently the widths of their trans-
parency windows could be equal and the probe and signal
fields propagate with equal slow group velocities with cer-

tain condition, which is dependent upon spin-orbit coupling.
Group-velocity matching is a fundamental condition for
achieving a large nonlinear shift because only in this way do
the probe and signal fields interact for a sufficiently long
time. Upon entering the CNT QD, the probe and signal fields
are converted into so-called dark-state polaritons,29 whereby
parts of the photonic excitation are temporally transferred to
the electron excition. In order to derive the equations of mo-

tion for polaritons, we introduce two new quantum fields �̂1

and �̂2 via the canonical transformations

�̂1�z,t� = cos 	1Ê1�z,t� − sin 	1

N
̂14/
11

�0�, �1a�

�̂2�z,t� = cos 	2Ê2�z,t� − sin 	2

N
̂23/
22

�0�, �1b�

where N is the number of electrons, Ê1,2 are the correspond-
ing fields operators, 
11

�0� and 
22
�0� are the electron distribution

in the absence of the probe and signal fields and the mixing
angles 	1,2 are defined as

tan 	1,2 =
g1,2


N

�
. �2�

Here g1=�31

�1 / �2��0SL� and g2=�42


�2 / �2��0SL� are
the electron-field coupling constants, with �31 and �42 being
the corresponding electron-dipole matrix elements, �1,2 is
the frequencies of the probe and signal fields, S is the cross-
section area of the quantum fields, and L is the length of the
interaction region. Introducing a plane-wave decomposition

of the polariton operators as �̂1,2=�q
̂1,2
q eiqz, it is easy to

check that the mode operators 
̂1,2
q possess the bosonic com-

mutation relations �
̂i
q , 
̂ j

q�†�=�ij�qq�.
29 The continuum of

modes is bounded by the EIT window and it is scanned by
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FIG. 1. �Color online� Carbon nanotube quantum dot. �a� Nanotube with two top gates. The probe and signal pulses are applied
perpendicular to the CNT axis. �b� Energy diagram of the lowest electron and hole states in a nanotube quantum dot versus the applied axial
magnetic field B�. Owing to spin-orbit coupling, the fourfold degeneracy is split into two Kramer doubles: the lower-energy doublet involves
states with parallel alignment of orbital and spin magnetic moments, whereas the higher-energy doublet has states with antiparallel align-
ment. With increasing B�, each state shifts according to its orbital and spin magnetic moments. �c� Equivalent energy diagram of �b� in trion
picture. The states �1	 and �2	 correspond to electrons having parallel and antiparallel alignment of orbital and spin magnetic moments and
the states �3	 and �4	 are formed by exciting one electron from the valence band to conductive band, respectively.
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q� �−�q /2,�q /2
.2 By applying adiabatic elimination of the
electronic degrees of freedom, one finds the equations of
motion for the probe and signal polaritons,

� �

�t
+

1

v1

�

�z
��̂1�z,t� = − �1�̂1�z,t� + i�1�̂1Î2 + F̂1,

�3a�

� �

�t
+

1

v2

�

�z
��̂2�z,t� = − �2�̂2�z,t� + i�2�̂2Î1 + F̂2,

�3b�

where Î1,2=�̂1,2
† �̂1,2 are the intensity operators for the probe

and signal polaritons and F̂1,2 the associated �-correlated
noise operators. The group velocities, the single-photon
absorption rates, and the cross-Kerr nonlinear interaction
terms are, respectively, given by v1=c / �1+tan2 	1
11

�0��,
v2=c / �1+tan2 	2
22

�0��, �1=−id14
11
�0� tan2 	1 /c, �2

=−id23
22
�0� tan2 	2 /c, �1=g1

2 sin2 	2�
22
�0�−
11

�0�� /cd12, and �2
=g2

2 sin2 	1�
22
�0�−
11

�0�� /cd12
� . Here d14=�1+�+ i�41, d23=�2

−�+ i�32, and d12=�1+�−�2+ i�21 with single-photon de-
tunings �1, �2, and �, the electron decay rates �41, �32, and
the spin-flip rate �21.

For pulsed probe and signal fields, the maximum interac-
tion time could be achieved with group-velocity matching.
The expressions of group velocities convey that it is possible
to achieve group velocity-matching �v1=v2=v� by preparing
suitable electrons in the initial spin states �1	 and �2	 in such
a way that


11
�0�


22
�0� =

tan2 	2

tan2 	1
=

g2
2

g1
2 . �4�

This can be realized with optical spin pumping using reso-
nant laser field.25 Assuming the wave numbers k1�k2=k and
�31��42 for simplicity, and recalling the definitions of g1,2,
then the cross-Kerr nonlinearity terms can be reduced to

�1 = g1
2 sin2 	2��SO

e + �SO
h �/2c2kd12, �5a�

�2 = g2
2 sin2 	1��SO

e + �SO
h �/2c2kd12

� . �5b�

In the absence of spin-orbit coupling, although cross-Kerr
nonlinearity can be obtained in such a structure, group-
velocity mismatching will prevent the probe and signal fields
from interacting for a sufficiently long time. Owing to the
energy differences produced by the strong spin-orbit cou-
pling, the combination of giant cross-Kerr nonlinearity and
group-velocity matching is not incompatible. Therefore, we
can conclude that the giant cross-Kerr nonlinearity in this
CNT QD structure is achieved based on both EIT and spin-
orbit coupling.

In the semiconducting CNT QD structure under consider-
ation, we note that �41 and �32 are very small. The spin-flip
rate, which is dominated by photon-assisted spin relaxation,
is expected to have magnitude varying from 1 �s−1 to
1 ms−1. Therefore, if we choose the detunings in such a way
that �1=−�2=−� �two-photon resonance� and �1��21, the
single-photon absorption rates are very small and �1,2 are

purely real. When attenuation and pulse spreading are small
enough to be neglected, Eqs. �3a� and �3b� can be easily
solved by

�̂1�z,t� = �̂1�0,��exp�i�1�̂2
†�0,���̂2�0,��z� , �6a�

�̂2�z,t� = �̂2�0,��exp�i�2�̂1
†�0,���̂1�0,��z� , �6b�

where �= t−z /v is the retarded time.
We first consider two single-photon pulses in the classical

limit, in which the operators are replaced by their corre-
sponding expectation values. Then the conditional phase
shifts accumulated by the probe and signal pulses after their
interaction �t�L /v� are given by

�1 = �2 = � �
9�2�31

2

8���2
n�5

S

�SO
e + �SO

h

�1
, �7�

where n=N /SL is the electron density. In the above deriva-
tion, we express the electron-field coupling constant through
the corresponding exciton recombination rate and assume
�42=�31.

25 Equation �7� exhibits that the nonlinear phase
shift is proportional to the spin-orbit coupling. The lower
limit for the coupling Rabi frequency is given by the condi-
tion for EIT ����2��31�41�, � can be chosen to be much
smaller than �31, resulting in the possibility of achieving �
phase shift with single photon. For realistic experimental pa-
rameters with T�10 K �Ref. 28�, S�1 �m2, N=1 �the
CNT QD trapping single electron�, L�40 nm �i.e., the
height of QD�, �31

−1=40 ps, and �1=0.1 meV, it can be es-
timated that the nonlinear phase shift ��� with the fidelity
F�1 �Ref. 5� can be obtained with B��18 T. Therefore, in
a single CNT QD structure, the nonlinear phase shift on the
order of � is feasible with single photon because �
�1 / ���2 �see Eq. �7��. This is one of the principal results of
this Brief Report.

The giant cross-Kerr nonlinearity in such a structure can
be applied to semiconducting-based quantum-information
processing. Introducing a polarizing beam splitter �PBS�, one
can realize a transformation corresponding to the controlled-
phase logic gate between two traveling single-photon pulses
representing qubits. Such a gate has potential capability to
build an all-optical quantum computer.30 We therefore inves-
tigate the evolution of the two-photon input state �1	1�1	2.
When �=�, calculations similar to those in Ref. 5 show that
the output state of a pair of single photons �t�L /v� is given
by �x	1�y	2= �−1�xy�x	1�y	2 �x ,y=0,1�. Thus, based on EIT
and the strong spin-orbit coupling, the controlled-phase gate
between the two photons representing qubits is realized.

Next we turn to the fully quantum treatment of the system
and investigate the feasibility of generating entanglement of
coherent Schrödinger-cat states.7 We first analyze the evolu-
tion of multimode coherent states ��in	= ��1	 � ��2	, which is
the most “classical” of all the quantum states. The states
�� j	=�q�� j

q	 �j=1,2� are eigenstates of the input operators

�̂ j�0, t� at z=0 with eigenvalues � j�t�=�q� j
qe−iqct. Upon

propagating through the CNT QD, each polariton experi-
ences a nonlinear phase shift. Then the expectation values
are obtained as
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��̂1,2�z,t�	 = �1,2���exp��ei�1,2 − 1�
��2,1����2

L�q
� , �8�

where �1,2 are the quantum phase shifts. The above solutions
have the same forms as those obtained for single-mode31 and
multimode copropagating fields.2,5 Both phases and ampli-
tudes of quantum polaritons exhibit periodic collapses and
revivals as �1,2 change from 0 to 2�. With the absence of
spin-orbit coupling, the phases and amplitudes of quantum
polaritons remain unchanged �group-velocity matching, no
cross-Kerr nonlinear interaction� or separate quickly after a
short interaction �group-velocity mismatching�. Therefore,
the quantum behaviors in such a system are the results of the
strong spin-orbit coupling. The time evolution of the input
states can also be calculated. It is very interesting that, when
�1=�, the output state of two fields takes the form

��out	 =
1

2
���1	 � ��2	 + ��1	 � �− �2	 + �− �1	 � ��2	 + �− �1	

� �− �2	� . �9�

This is an entangled superposition of macroscopically distin-
guished states. Such entanglement of coherent Schrödinger-
cat states has important applications in scheme of quantum-

information processing and communication with continuous
variables.

In summary, we have proposed and studied the highly
efficient cross-Kerr nonlinear interaction between two weak
optical fields in semiconducting CNT QD structure. By com-
bining electromagnetically induced transparency and the en-
ergy differences produced by strong spin-orbit coupling, gi-
ant cross-Kerr nonlinearity accompanied by negligible
absorption and spectral broadening can be achieved under
realistic conditions for CNT QD in which matched group
velocities for two interacting pulses can be realized. The at-
tainable � nonlinear phase shift has potential applications in
the implementation of high-fidelity controlled-phase gate be-
tween two single-photon pulses and generation of entangle-
ment of coherent Schrödinger-cat states. The proposed
scheme may therefore pave the way to quantum information
such as deterministic all-optical quantum computation based
on semiconducting nanomaterials.
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